15,615 research outputs found

    Systematic review and meta-analysis of the growth and rupture rates of small abdominal aortic aneurysms: implications for surveillance intervals and their cost-effectiveness.

    Get PDF
    BACKGROUND: Small abdominal aortic aneurysms (AAAs; 3.0-5.4 cm in diameter) are usually asymptomatic and managed by regular ultrasound surveillance until they grow to a diameter threshold (commonly 5.5 cm) at which surgical intervention is considered. The choice of appropriate surveillance intervals is governed by the growth and rupture rates of small AAAs, as well as their relative cost-effectiveness. OBJECTIVES: The aim of this series of studies was to inform the evidence base for small AAA surveillance strategies. This was achieved by literature review, collation and analysis of individual patient data, a focus group and health economic modelling. DATA SOURCES: We undertook systematic literature reviews of growth rates and rupture rates of small AAAs. The databases MEDLINE, EMBASE on OvidSP, Cochrane Central Register of Controlled Trials 2009 Issue 4, ClinicalTrials.gov, and controlled-trials.com were searched from inception up until the end of 2009. We also obtained individual data on 15,475 patients from 18 surveillance studies. REVIEW METHODS: Systematic reviews of publications identified 15 studies providing small AAA growth rates, and 14 studies with small AAA rupture rates, up to December 2009 (later updated to September 2012). We developed statistical methods to analyse individual surveillance data, including the effects of patient characteristics, to inform the choice of surveillance intervals and provide inputs for health economic modelling. We updated an existing health economic model of AAA screening to address the cost-effectiveness of different surveillance intervals. RESULTS: In the literature reviews, the mean growth rate was 2.3 mm/year and the reported rupture rates varied between 0 and 1.6 ruptures per 100 person-years. Growth rates increased markedly with aneurysm diameter, but insufficient detail was available to guide surveillance intervals. Based on individual surveillance data, for each 0.5-cm increase in AAA diameter, growth rates increased by about 0.5 mm/year and rupture rates doubled. To control the risk of exceeding 5.5 cm to below 10% in men, on average a 7-year surveillance interval is sufficient for a 3.0-cm aneurysm, whereas an 8-month interval is necessary for a 5.0-cm aneurysm. To control the risk of rupture to below 1%, the corresponding estimated surveillance intervals are 9 years and 17 months. Average growth rates were higher in smokers (by 0.35 mm/year) and lower in patients with diabetes (by 0.51 mm/year). Rupture rates were almost fourfold higher in women than men, doubled in current smokers and increased with higher blood pressure. Increasing the surveillance interval from 1 to 2 years for the smallest aneurysms (3.0-4.4 cm) decreased costs and led to a positive net benefit. For the larger aneurysms (4.5-5.4 cm), increasing surveillance intervals from 3 to 6 months led to equivalent cost-effectiveness. LIMITATIONS: There were no clear reasons why the growth rates varied substantially between studies. Uniform diagnostic criteria for rupture were not available. The long-term cost-effectiveness results may be susceptible to the modelling assumptions made. CONCLUSIONS: Surveillance intervals of several years are clinically acceptable for men with AAAs in the range 3.0-4.0 cm. Intervals of around 1 year are suitable for 4.0-4.9-cm AAAs, whereas intervals of 6 months would be acceptable for 5.0-5.4-cm AAAs. These intervals are longer than those currently employed in the UK AAA screening programmes. Lengthening surveillance intervals for the smallest aneurysms was also shown to be cost-effective. Future work should focus on optimising surveillance intervals for women, studying whether or not the threshold for surgery should depend on patient characteristics, evaluating the usefulness of surveillance for those with aortic diameters of 2.5-2.9 cm, and developing interventions that may reduce the growth or rupture rates of small AAAs. FUNDING: The National Institute for Health Research Health Technology Assessment programme

    Rainbow Free Colorings and Rainbow Numbers for xy=z2x-y=z^2

    Full text link
    An exact r-coloring of a set SS is a surjective function c:S{1,2,,r}c:S \rightarrow \{1, 2, \ldots,r\}. A rainbow solution to an equation over SS is a solution such that all components are a different color. We prove that every 3-coloring of N\mathbb{N} with an upper density greater than (4s1)/(34s)(4^s-1)/(3 \cdot 4^s) contains a rainbow solution to xy=zkx-y=z^k. The rainbow number for an equation in the set SS is the smallest integer rr such that every exact rr-coloring has a rainbow solution. We compute the rainbow numbers of Zp\mathbb{Z}_p for the equation xy=zkx-y=z^k, where pp is prime and k2k\geq 2

    Hepatic retransplantation in cholestatic liver disease: Impact of the interval to retransplantation on survival and resource utilization

    Get PDF
    The aim of our study was to quantitatively assess the impact of hepatic retransplantation on patient and graft survival and resource utilization. We studied patients undergoing hepatic retransplantation among 447 transplant recipients with primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) at 3 transplantation centers. Cox proportional hazards regression analysis was used for survival analysis. Measures of resource utilization included the duration of hospitalization, length of stay in the intensive care unit, and the duration of transplantation surgery. Forty-six (10.3%) patients received 2 or more grafts during the follow-up period (median, 2.8 years). Patients who underwent retransplantation had a 3.8-fold increase in the risk of death compared with those without retransplantation (P < .01). Retransplantation after an interval of greater than 30 days from the primary graft was associated with a 6.7-fold increase in the risk of death (P < .01). The survival following retransplantations performed 30 days or earlier was similar to primary transplantations. Resource utilization was higher in patients who underwent multiple consecutive transplantations, even after adjustment for the number of grafts during the hospitalization. Among cholestatic liver disease patients, poor survival following hepatic retransplantation is attributed to late retransplantations, namely those performed more than 30 days after the initial transplantation. While efforts must be made to improve the outcome following retransplantation, a more critical evaluation may be warranted for late retransplantation candidates

    CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering

    Full text link
    Intrinsic image decomposition is a challenging, long-standing computer vision problem for which ground truth data is very difficult to acquire. We explore the use of synthetic data for training CNN-based intrinsic image decomposition models, then applying these learned models to real-world images. To that end, we present \ICG, a new, large-scale dataset of physically-based rendered images of scenes with full ground truth decompositions. The rendering process we use is carefully designed to yield high-quality, realistic images, which we find to be crucial for this problem domain. We also propose a new end-to-end training method that learns better decompositions by leveraging \ICG, and optionally IIW and SAW, two recent datasets of sparse annotations on real-world images. Surprisingly, we find that a decomposition network trained solely on our synthetic data outperforms the state-of-the-art on both IIW and SAW, and performance improves even further when IIW and SAW data is added during training. Our work demonstrates the suprising effectiveness of carefully-rendered synthetic data for the intrinsic images task.Comment: Paper for 'CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering' published in ECCV, 201

    Damage detection on the Z24 bridge by a spectral-based dynamic identification technique

    Get PDF
    The paper tackles the dynamic identification and the damage detection carried out by a spectral-based method on the well-known Z24 bridge, a three-span pre-stressed concrete bridge located in Switzerland. Before being destroyed, the bridge was progressively damaged and tested in the framework of the Brite Euram project SIMCES. Starting from this benchmark, the presented spectral-based identification technique is validated and the usefulness of this method as a non-destructive tool able to catch the dynamic behavior of a structure and locate the damage is widely discussed. Firstly, a FE model of the bridge was built and calibrated in order to analyze its response to different excitation types (free vibration, triangular pulse, swept sine, shaker and random vibrations) and several damage scenarios. Secondly, aiming at identifying both the modal parameters and the damage of the bridge, the spectral-based method is applied making use of the power spectral matrix decomposition. Finally, a proper index is defined and applied to this case-study in order to locate the damage.(undefined

    Influence of prohexadione-calcium, trinexapac-ethyl and hexaconazole on lodging characteristic and gibberellin biosynthesis of rice (Oryza sativa L.)

    Get PDF
    We investigated the influence of prohexadione-calcium (Pro-Ca), trinexapac-ethyl (TNE) and hexaconazole (HX) on lodging and gibberellin (GA) biosynthesis pathway of rice cultivar, Hwayeongbyeo. It was observed that these novel synthetic growth retardants suppressed lodging of rice under field conditions through blocking GA biosynthesis pathway. These growth retarding chemicals were applied at basic (20 uM) and elevated (40 uM) rates either 10 days before heading (10 DBH) or 5 days before heading (5 DBH). We found that Pro-Ca, TNE and their combined application (Pro-Ca + TNE) were most effective in decreasing rice length and lodging index, when applied at 10 DBH. Similarly, the endogenous bioactive GA1 contents of rice significantly declined with application of Pro-Ca, TNE and Pro-Ca + TNE, while they were less effected by basic and elevated rates of HX as compared to the control. The growth retardants were more effective in decreasing rice lodging and blocking GA biosynthesis when applied in elevated rates. The levels of the endogenous gibberellins in rice shoots were measured by GC/MS-SIM using 2H2-labeled gibberellins as internal standards. Effect of these synthetic chemicals on growth and GA inhibition were stronger initially but eroded rapidly under field conditions. It was thus concluded that Pro-Ca and TNE were most effective in reducing plant length and suppressing lodging of rice crop under field conditions, where lodging is a major constraint to higher productivity.Key words: Growth retardants, plant growth, gibberellin biosynthesis, lodging index, rice

    Zeolitic imidazolate framework-coated acoustic sensors for room temperature detection of carbon dioxide and methane

    Get PDF
    The integration of nanoporous materials such as metal organic frameworks (MOFs) with sensitive transducers can result in robust sensing platforms for monitoring gases and chemical vapors for a range of applications. Here, we report on an integration of the zeolitic imidazolate framework-8 (ZIF-8) MOF with surface acoustic wave (SAW) and thickness shear mode quartz crystal microbalance (QCM) devices to monitor carbon dioxide (CO2) and methane (CH4) under ambient conditions. The MOF was directly coated on the Y-Z LiNbO3 SAW delay lines (operating frequency, f0 = 436 MHz) and AT-cut quartz TSM resonators (resonant frequency, f0 = 9 MHz) and the devices were tested for various gases in N2 under ambient conditions. The devices were able to detect the changes in CO2 or CH4 concentrations with relatively higher sensitivity to CO2, which was due to its higher adsorption potential and heavier molecular weight. The sensors showed full reversibility and repeatability which were attributed to the physisorption of the gases into the MOF and high stability of the devices. Both types of sensors showed linear responses relative to changes in the binary gas compositions thereby allowing to construct calibration curves which correlated well with the expected mass changes in the sorbent layer based on mixed-gas gravimetric adsorption isotherms measured on bulk samples. For 200 nm thick films, the SAW sensitivities to CO2 and CH4 were 1.44 × 10-6/vol% and 8 × 10-8/vol%, respectively, against the QCM sensitivities 0.24 × 10-6/vol% and 1 × 10-8/vol%, respectively, which were evaluated as the fractional change in the signal. The SAW sensors were also evaluated for 100 nm-300 nm thick films, the sensitivities of which were found to increase with the thickness due to the increased number of pores for the adsorption of a larger amount of gases. In addition, the MOF-coated SAW delay lines had a good response in wireless mode, demonstrating their potential to operate remotely for the detection of the gases at emission sites across the energy infrastructure

    An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    Get PDF
    © 2017 Institute of Physics and Engineering in Medicine. Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target's projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker's 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of -0.03 ± 0.32 mm, -0.01 ± 0.13 mm and 0.03 ± 0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07 ± 1.18°, 0.07 ± 1.00° and 0.06 ± 1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81 motion traces from 19 liver patients and was found to have sub-mm and sub-degree accuracy

    Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016

    Get PDF
    Nitryl chloride (ClNO2) is a radical reservoir species that releases chlorine radicals upon photolysis. An integrated analysis of the impact of ClNO2 on regional photochemistry in the Seoul metropolitan area (SMA) during the Korea-United States Air Quality Study (KORUS-AQ) 2016 field campaign is presented. Comprehensive multiplatform observations were conducted aboard the NASA DC-8 and at two ground sites (Olympic Park, OP; Taehwa Research Forest, TRF), representing an urbanized area and a forested suburban region, respectively. Positive correlations between daytime Cl2 and ClNO2 were observed at both sites, the slope of which was dependent on O3 levels. The possible mechanisms are explored through box model simulations constrained with observations. The overall diurnal variations in ClNO2 at both sites appeared similar but the nighttime variations were systematically different. For about half of the observation days at the OP site the level of ClNO2 increased at sunset but rapidly decreased at around midnight. On the other hand, high levels were observed throughout the night at the TRF site. Significant levels of ClNO2 were observed at both sites for 4-5 h after sunrise. Airborne observations, box model calculations, and back-trajectory analysis consistently show that these high levels of ClNO2 in the morning are likely from vertical or horizontal transport of air masses from the west. Box model results show that chlorine-radical-initiated chemistry can impact the regional photochemistry by elevating net chemical production rates of ozone by 25% in the morning

    Evaluation of the efficacy of Alpron disinfectant for dental unit water lines

    Get PDF
    AIMS: To assess the efficacy of a disinfectant, Alpron, for controlling microbial contamination within dental unit water lines. METHODS: The microbiological quality of water emerging from the triple syringe, high speed handpiece, cup filler and surgery hand wash basin from six dental units was assessed for microbiological total viable counts at 22 degrees C and 37 degrees C before and after treatment with Alpron solutions. RESULTS: The study found that the use of Alpron disinfectant solutions could reduce microbial counts in dental unit water lines to similar levels for drinking water. This effect was maintained in all units for up to six weeks following one course of treatment. In four out of six units the low microbial counts were maintained for 13 weeks. CONCLUSIONS: Disinfectants may have a short term role to play in controlling microbial contamination of dental unit water lines to drinking water quality. However, in the longer term attention must be paid to redesigning dental units to discourage the build up of microbial biofilms
    corecore